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1. Introduction

Maximum likelihood (ML) estimation is a popular approach in solving signal processing

problems, especially in scenarios with a large data set, where the maximum likelihood

estimator (MLE) is in many senses optimal due to its asymptotic characteristics. The

procedure simply relies on maximizing the likelihood equation, and, in analytically

intractable cases, the MLE can still be obtained iteratively through methods of

optimization, e.g., via the method of scoring. However, in many signal processing

problems, it is desirable or necessary to perform ML estimation when side information is

available. Often this additional information is in the form of parametric equality or

inequality constraints on a subset of the parameters. Examples of side information include

the constant modulus property, some known signal values (semi-blind problems), restricted

power levels (e.g., in networks), known angles of arrival, array calibration, some forms of

precoding, and so on. With the addition of these parametric constraints, this procedure is

now called constrained maximum likelihood (CML) estimation, with the solution being the

constrained maximum likelihood estimator (CMLE).

As a measure of performance for the MLE, the Cramér-Rao bound (CRB), obtained via

the inverse of the Fisher information matrix (FIM), is the lower bound of the error

covariance of any unbiased estimator. However, it is desirable to measure performance of

estimators that satisfy the side information constraints. Gorman and Hero used the

Chapman-Robbins bound to develop a constrained version of the CRB which lower bounds

the error covariance for constrained, unbiased estimators for the case when the

unconstrained model has a nonsingular FIM (1 ). Marzetta simplified their derivation and

formulation for the same nonsingular FIM case (2 ). Then, Stoica and Ng constructed a

more general formulation of the CRB that incorporates the constraint information without

the assumption of a full-rank FIM (3 ). Their constrained CRB (CCRB) was also shown to

subsume the previous cases which require a nonsingular FIM.

The MLE is an optimal choice for an estimator in the sense that asymptotically the MLE

is both consistent and efficient (4 ). For the case of linear equality constraints, Osborne

showed that this result is preserved with the error covariance of the CMLE approaching

the CCRB (5 ). Osborne’s result was obtained independently and is further confirmation of

the CCRB result in (3 ), although the CCRB is not discussed in (5 ). We extend this

asymptotic normality result for the CMLE to the more general nonlinear constraint case.

Specifically, we show that the CMLE is also consistent and asymptotically efficient with

respect to the CCRB.

Although the ML problem is easy to express, obtaining the MLE is often a difficult task.

Fortunately, iterative techniques, such as the method of scoring (4,6 ), are available which
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reach the MLE under certain conditions. Typically, scoring is applied on top of an existing

method which provides the intialization (7,8 ). However, those schemes must be adjusted

when constraints have been added to the model. Prior research has focused on developing

iterative techniques based on Lagrangian methods to obtain the CMLE (5,9,10 ). However,

convergence properties and criteria are overlooked.

The constrained scoring algorithm (CSA) developed here is a generalization of the method

of scoring to obtain the CMLE under certain conditions. The scheme relies on alternating

between a projection step, similar to gradient based descent iterations, and a restorative

step which ensures that the solution satisfies the parametric constraints. We, furthermore,

detail several convergence properties associated with this CSA. Convergence of iterative

techniques are always dependent on the initialization, but the results obtained here show

that this method obtains at least a local MLE. Thus, with a sufficiently accurate

initialzation, the CSA will in fact obtain the CMLE.

We provide several examples to demonstrate the effectiveness of the CSA. First, we

examine the classical CMLE problem when imposing linear constraints on a linear model.

The CSA analytically solves this problem in a single step and provides an equivalent

alternative to the traditional answer (e.g., see (4, p. 252) and (11, p. 299)), where the new

solution is applicable under weaker conditions. We also demonstrate that our CMLE and

the traditional solution are both unbiased and efficient. Second, we find the CMLE after

imposing nonlinear, nonconvex constraints on the signal modulus in a complex-valued

linear model. Provided the initialization is sufficiently close, our simulations show evidence

of unbiasedness and efficiency for this particular choice of constraint as well. Third, we

consider a nonlinear model parameterization from (12 ). In this case, contant modulus and

semiblind constraints are applied on the signal that passes through an instantaneous

mixing channel.

This paper is developed as follows: In the following section, we formally state the CML

problem and give definitions for necessary terms used throughout. In section 3, we

determine the asymptotic normality properties of the CMLE, showing both consistency

and asymptotic efficiency. Next, in section 4, we develop the CSA via the method of

Lagrange multipliers and natural projections. In section 5, we discuss the convergence

properties of the given CSA. In sections 6 and 7, we provide some examples that illustrate

the effectiveness of the CSA.

2. Preliminaries

In this and subsequent sections, we use the following notation: Scalars will be in lowercase,

vectors in bold font, and matrices in uppercase bold font (e.g., a is a scalar, a a vector, and
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A a matrix), where it is understood that (·)i will denote the ith element of a vector or

row/column of a matrix and (·)ij will denote the ith row, jth column element of a matrix.

We will denote (·)T , (·)∗, and (·)H as the transpose, the conjugate and the conjugate

transpose, respectively, of either a vector or matrix. For matrices, (·)−1 is the matrix

inverse and (·)† the pseudoinverse. All vectors will be column vectors. Sets will be denoted

in capital Greek letters, and all sets will be a subset of a Euclidean metric space, i.e.,

(Rn, ‖·‖) for some positive integer n and where ‖·‖ is the L2-norm. When applied to

matrices, ‖·‖ will be the Frobenius norm.

2.1 Problem Statement and Definitions

We have a vector of observations x in a sample space Ω ⊂ RM satisfying the likelihood

function of a known form p(x; θ). We want to estimate the unknown θ parameter vector

under the assumption that θ is restricted to a closed, convex set Θ ⊂ RN , which we will

assume can be defined parametrically.1 Let θo ∈ Θ be the true vector of parameters. Then

the CMLE θ̂(x) is given by

θ̂(x) = arg max
θ∈Θ

p(x; θ). (1)

Since − log(·) is strictly monotone decreasing, this CMLE can alternately be viewed as the

solution to the following constrained optimization problem

min
θ

− log p(x; θ) (2)

s.t. f(θ) = 0 (3)

g(θ) ≤ 0 (4)

where the the negative log-likelihood function is the objective function, and f : RN → RK

and g : RN → RL are the functional constraints which define the constraint set, i.e.,

Θ = {θ : f(θ) = 0, g(θ) ≤ 0}. We make the assumption that p(x; θ), f(θ), and g(θ) all

have continuous second derivatives with respect to θ. Derivatives will be expressed either

as ∇θ(·) or as ∂
∂θ

(·). We also require that the functional constraints be consistent, i.e.,

Θ 6= ∅. All expectations will be with respect to the appropriate distribution of the

likelihood, i.e. Eθ(·) =
∫

y∈Ω
(·)p(y; θ)dy.

A point θ which satisfies the functional constraints is said to be feasible, and Θ is referred

to as the feasible region. The ith inequality constraint gi(θ) ≤ 0 is said to be active at a

feasible point θ if gi(θ) = 0, otherwise it is inactive. Thus, the equality constraints f(θ)

are always considered active. A feasible point θ is a regular point of the constraints in f

and the active constraints in g if the vectors ∇θfi(θ), ∇θgj(θ), 1 ≤ i ≤ K, 1 ≤ j ≤ L′, are

1The condition that Θ be convex is not so much a strict requirement as it is a convenient one. More
discussion on this issue is found in section 4.3.
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linearly independent, where we assume only the first L′ constraints of g are active. Thus, a

regular point requires no redundancy in the active constraints. Properties for these terms

can be found in (13,14 ).

Define the gradient matrices of f and g by the continuous functions

F (θ) = ∇T
θ f(θ) and G(θ) = ∇T

θ g(θ).

Note that, assuming θ is regular in the active constraint set, F (θ) has full row rank K,

whereas G(θ) is not necessarily so. Define U : RN → RN×J to be a continuous function

such that for each θ, U(θ) is a matrix whose columns form an orthonormal null space of

the range space of the row vectors in F (θ), i.e., such that

F (θ)U(θ) = 0 and UT (θ)U(θ) = IJ×J (5)

for every θ ∈ RN . If θ is regular then U : RN → RN×N−K , i.e., then J = N −K since F (θ)

is full row rank. Also, note that U is independent of θ whenever F is. This occurs in the

linearly constrained case, when f(θ) = Fθ + v for some matrix F ∈ RN×N and vector

v ∈ RN . So, the gradient F (θ) is a constant F and, thus, U(θ) = U .

2.2 The Constrained Cramer-Rao Lower Bound

The error covariance of any unbiased estimator θ̄(x) of θ is bounded by the Cramer-Rao

Lower Bound (CRB). The classical development of the Cramer-Rao Lower Bound (CRB) is

well-known (4,15 ). The bound is expressed as

Eθ((θ̄(x) − θ)(θ̄(x) − θ)T ) ≥ I−1(θ) (6)

where I(θ) is the FIM given by

I(θ) = Eθ
∂ log p(x; θ)

∂θ

∂ log p(x; θ)

∂θT
. (7)

The CRB and FIM exist provided the following regularity conditions2 hold:

Eθ
∂ log p(x; θ)

∂θ
= 0 and

∂

∂θ
Eθθ̄(x) = Eθθ̄(x)

∂ log p(x; θ)

∂θ
. (8)

2In the statistical inference literature a point θ that satisfies these regularity conditions is sometimes
said to be regular, or information-regular (16 ). To avoid the confusion between that definition and the
optimization literature’s definition in the prior subsection, all instances of regular in this paper will be in the
optimization context and all instances of regularity will be in the statistical inference context.
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Note these must hold for all θ. Additionally, if we also have that

Eθ
∂2 log p(x; θ)

∂θ∂θT
=

∂

∂θ
Eθ

∂ log p(x; θ)

∂θT
, (9)

then we can use an alternate expression for the FIM:

I(θ) = −Eθ
∂2 log p(x; θ)

∂θ∂θT
. (10)

From equation 6, the existence of the CRB requires a nonsingular FIM as well. When the

model is not locally identifiable, however, then the FIM is singular and the CRB is not

always defined.3 To obtain a CRB, the model must include sufficient constraints on the

parameters to achieve identifiability and, hence, a nonsingular FIM. The choice of

constraints are completely dictated by the model, and, thus, applying such constraints

previously required a reevaluation of the FIM on some appropriate dimension-reducing

reparameterization of θ that includes this constraint information. A bound is then

obtained by a transformation from the reparameterization back to θ. Since the reevaluated

FIM depends on the reparameterization, i.e., it needs to be evaluated for every

reparameterization or unique set of constraints, the classical Fisher Information theory

does not incorporate the constraint information in any convenient closed form. Even when

the original model is identifiable, the classical theory ignores the contribution of the side

information in the form of a specified constraint set.

To overcome this deficiency, Gorman and Hero (1 ) and then Marzetta (2 ) developed

formulations of the CRB which do include constraint information for the case where the

FIM is full-rank. Improving on their work, Stoica and Ng (3 ) formulated a CCRB that

explicitly incorporates the active constraint information with the original FIM, singular or

nonsingular.

Theorem 1 (Stoica & Ng (3)). Assume we know the active constraints and that these

are all incorporated into f . Let θ̄(x) be an unbiased estimate of θ satisfying the active

functional constraints in equation 3. Then, under certain regularity conditions, if

UT (θ)I(θ)U(θ) is nonsingular,

Eθ((θ̄(x) − θ)(θ̄(x) − θ)T ) ≥ U(θ)(UT (θ)I(θ)U(θ))−1UT (θ)
∆
= B(θ) (11)

where equality is achieved if and only if (in the mean square sense)

θ̄(x) − θ = U(θ)(UT (θ)I(θ)U(θ))−1UT (θ)∇ log p(x; θ).

In the evaluation of this CCRB, the inactive inequality constraints do not contribute any

side information. This is so because we made the assumption that the inequality

3Often, the pseudoinverse I†(θ) is used, but this bound is not always valid except under certain conditions
(17 ).
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constraints are inactive (1 ), i.e., only active constraints affect the outcome of the

estimator. Also note that rather than requiring a non-singular FIM I(θ), the alternate

condition is that UT (θ)I(θ)U(θ) be non-singular. Thus, the unconstrained FIM may still

be singular, or, equivalently, the unconstrained model unidentifiable, but the constrained

model must be identifiable, at least locally.

The natural extensions to the classical model, e.g., the CRB on differentiable

transformations (4, p. 45) and the CRB for biased bounds, also can be applied to this

constrained formulation (12 ).

3. Asymptotic Normality of the CMLE

Asymptotic properties of the MLE can be found in (4 ). This motivates the desire to obtain

corresponding results for the CMLE. In particular, we wish to show results on asymptotic

consistency and efficiency for the constrained case. For asymptotic consistency, we will rely

on the Kullback-Leibler information (4 ). For asymptotic efficiency, since the constrained

maximum likelihood problem equation 1 is equivalent to the constrained optimization

problem equations 2 through 4, we will use the tools of optimization theory. The main

results of this section, equations 18 and 32, can be summarized as follows.

Theorem 2. Assuming the pdf p(x; θ) satisfies certain regularity conditions, e.g., as in

Theorem 1, then the CMLE θ̂n is asymptotically distributed according to

θ̂n ∼ N (θo, B(θo)) (12)

where θo is the true parameter vector.

Proof. Suppose we observe the data set (x1, . . . , xn) where each xi is independently

distributed as x, i.e., we observe n iid samples from a distribution of the known form

p(x, θ), in order to estimate θ. And, again, θo is the true parameter vector. For this

section, denote θ̂n(x1, . . . , xn) as the CMLE based on n samples. For convenience, in this

section, the CMLE will also often be denoted θ̂n. Then, the CMLE on n samples

maximizes the joint density of (x1, . . . , xn), i.e.,

θ̂n(x1, . . . , xn) = arg max
θ∈Θ

n∏

i=1

p(xi, θ). (13)

Or, equivalently, since log is monotone,

θ̂n(x1, . . . , xn) = arg max
θ∈Θ

1

n
log

n∏

i=1

p(xi, θ) (14)

= arg max
θ∈Θ

1

n

n∑

i=1

log p(xi, θ). (15)
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As n → ∞, by the law of large numbers we have that

θ̂n(x1, . . . , xn) → arg max
θ∈Θ

Eθo log p(x; θ) (16)

The Kullback-Liebler information satisfies

Eθ log
p(x; θ)

p(x; φ)
=

∫

Ω

log
p(x; θ)

p(x; φ)
p(x; θ)dx ≥ 0 (17)

with equality if and only if θ = φ. Thus, we have that Eθo log p(x; θ) ≤ Eθo log p(x; θo)

with equality if and only if θ = θo. Thus, the solution of the maximization in equation 16

is θo. That is, as n → ∞ then

θ̂n(x1, . . . , xn) → θo, (18)

and the CMLE is consistent.

Next we determine the asymptotic covariance characteristics of θ̂n employing tools from

optimization theory. One such useful tool in converting the constrained optimization

problem equation 2 into an unconstrained problem is the method of Lagrange multipliers.

The method develops a Lagrangian function which incorporates the objective and

constraints so that solutions of the optimization problem must be stationary points of this

function.4 The Lagrangian of equation 2 is

L(θ, µ, ν) = − log p(x; θ) + µTf(θ) + νT g(θ). (19)

The vectors µ ∈ RK and ν ∈ RL are the Lagrange multipliers of the function. Any potential

solution of equation 2 must be a stationary point of equation 19, i.e., it must be a point θ∗

satisfying the following Karush-Kuhn-Tucker (KKT) necessary conditions (18, p.243):

∇T
µL(θ∗, µ∗, ν∗) = f(θ∗) = 0 (20)

g(θ∗) ≤ 0 (21)

ν∗ ≥ 0 (22)

ν∗T g(θ∗) = 0 (23)

∇T
θ L(θ∗, µ∗, ν∗) = −∇T

θ log p(x; θ∗) + µ∗T F (θ∗) + ν∗T G(θ∗) = 0. (24)

Note the first two conditions, equations 20 and 21, are simply the constraints equations 3

and 4 from the constrained optimization problem. Also, equation 23 implies that ν∗
i is

nonzero if and only if the constraint gi is active. Either ν∗
i or gi(θ

∗) is zero, exclusively, so

4A commonly used alternative optimality condition for convex sets is discussed in appendix A.
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equations 21 through 23 actually define L explicit equations. Since equation 20 defines K

equations and equation 24 defines N equations, this system above contains exactly

K + L + N equations with K + L + N unknowns (θ∗, µ∗, ν∗). Where these equations are

not redundant, i.e., at a regular point, the solution (θ∗, µ∗, ν∗) is locally unique. This

solution (θ∗, µ∗, ν∗), however, is typically not analytically tractable and requires a

numerical optimization approach.

The last equation can be conveniently simplified by considering only the active constraints

at a stationary point θ∗, for similar reasons given in the CCRB development. So for any

stationary point, we will assume that all the active constraints are already incorporated

into f and modify F and U accordingly. Hence, we can rewrite equation 24 as

−∇T
θ log p(x; θ∗) + µ∗T F (θ∗) = 0. (25)

This implies that the gradient of the log-likelihood is in the range space of the gradient of

the active equality constraints at the stationary point. Hence, geometrically, the direction

of steepest descent of the objective function must be orthogonal to the tangent plane of f

at stationary points of the Lagrangian. And since θ̂n is a stationary point, equations 20

through 25 hold at θ̂n. From equation 5, F (θ̂n)U(θ̂n) = 0, so equation 25 implies that a

necessary condition for θ̂n to be the CMLE is for

∇T
θ log p(x; θ̂n)U(θ̂n) = 0. (26)

For a moment, it will be convenient to consider the the equivalent condition of equation 26

in vector notation, i.e., for 1 ≤ j ≤ J ,

∇T
θ log p(x; θ̂n)uj(θ̂n) = 0 (27)

where uj(θ) is the jth column of U(θ). Now let θ be a point near θ̂n. The Taylor

expansion (19 ) of equation 27 about θ evaluated at θ̂n gives us

0 = ∇T
θ log p(x; θ)uj(θ) + uT

j (θ)∇2
θ log p(x; θ)(θ̂n − θ)

+∇T
θ log p(x; θ)∇T

θ uj(θ)(θ̂n − θ) + o(1)

= ∇T
θ log p(x; θ)[uj(θ) + ∇T

θ uj(θ)(θ̂n − θ) + o(1)]

+uT
j (θ)∇2

θ log p(x; θ)(θ̂n − θ) + o(1)

= ∇T
θ log p(x; θ)uj(θ̂n) + uT

j (θ)∇2
θ log p(x; θ)(θ̂n − θ) + o(1) (28)
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where the o(1) term is the sum of the higher order terms of (θ̂n − θ), which vanishes as∥∥∥θ̂n − θ
∥∥∥ → 0. Collecting the vectors in equation 28 in matrix notation, we have

0 = UT (θ̂n)∇θ log p(x; θ) + UT (θ)∇2
θ log p(x; θ)(θ̂n − θ) + o(1).5 (29)

Since the CMLE is consistent from equation 18, then for sufficiently large n, the CMLE is

close to the true parameter vector θo, and so the equation is satisfied for the true

parameter vector θo, i.e., when θ = θo. So,

0 = UT (θ̂n)∇θ log p(x; θo) + UT (θo)∇2
θ log p(x; θo)(θ̂n − θo) + o(1). (30)

Recall that θo is also subject to the active (equality) constraints, i.e., it is a feasible point

just as θ̂n is. Since Θ is connected, there exists a path-connected curve on the surface of

f(θ) = 0 including the points
{

θ̂n : n = 1, 2, . . .
}

and θo. Such a curve, in the

optimization context, is called a feasible arc since every point on the curve satisfies the

equality constraints. Let the continuously differentiable map θ̃ : R → Θ denote this

feasible arc such that θ̃(0) = θo and θ̃( 1
n
) = θ̂n for each n. This arc reflects the consistency

result since θ̂n = θ̃( 1
n
) → θ̃(0) = θo as n → ∞. Since f(θ̃(t)) = 0 for all t, then

0 =
d

dt
f(θ̃(t))

∣∣∣∣
t=0

= ∇T
θ f(θ̃(t))

d

dt
θ̃(t)

∣∣∣∣
t=0

= F (θ(0))
d

dt
θ̃(t)

∣∣∣∣
t=0

= F (θo)
d

dt
θ̃(t)

∣∣∣∣
t=0

.

Thus, from equation 5, d
dt

θ̃(t)
∣∣∣
t=0

∈ span U(θo). Hence, using the Lagrange remainder

form for the Taylor series (19 ), we have that

θ̂n − θo = θ̃(
1

n
) − θ̃(0) =

1

n
U(θ̃(s(n)))qn (31)

for some 0 < s(n) < 1
n

and some qn ∈ RJ . Substituting equation 31 into 30, we have

0 = UT (θ̂n)∇θ log p(x; θo) − UT (θo)
1

n
∇2

θ log p(x; θo)U(θ̃(s(n)))qn + o(1).

Given the regularity condition of Theorem 1 at θo, then for sufficiently large n we have

that the matrix UT (θo)
1
n
∇2

θ log p(x; θo)U(θ̃(s(n))) is invertible for θ̃ in a neighborhood of

θo. Therefore, solving for qn we find that

qn =

(
UT (θo)

1

n
∇2

θ log p(x; θo)U(θ̃(s(n)))

)−1

UT (θ̂n)∇θ log p(x; θo) + o(1).

5By o(1) we mean a vector which has all its elements o(1).
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Substituting qn back into equation 31 yields

θ̂n − θo =

1

n
U(θ̃(s(n)))

(
UT (θo)

1

n
∇2

θ log p(x; θo)U(θ̃(s(n)))

)−1

UT (θ̂n)∇θ log p(x; θo) + o(1),

or

√
n(θ̂n − θo) =

U(θ̃(s(n)))

(
UT (θo)

1

n
∇2

θ log p(x; θo)U(θ̃(s(n)))

)−1

UT (θ̂n)
1√
n
∇θ log p(x; θo) + o(1).

Now, let n → ∞. Then θ̂n → θo by asymptotic consistency from equation 18, o(1) → 0,

and − 1
n
∇2

θ log p(x; θo) → I(θo) by the law of large numbers, i.e., since
1√
n
∇θ log p(x; θo) ∼ N (0, I(θo)) (4 ). Also U(θ̂n) → U(θo) by continuity, and

U(θ̃(s(n))) → U(θo) by the pinching theorem and continuity. Thus, we have that as

n → ∞,

U(θ̃(s(n)))

(
UT (θo)

1

n
∇2

θ log p(x; θo)U(θ̃(s(n)))

)−1

UT (θ̂n)

→ U(θo)(U
T (θo)I(θo)U(θo))

−1UT (θo) a.s.

From the asymptotic normality result on the MLE (4,15 ), Cov( 1√
n
∇θ log p(x; θo)) → I(θo)

as n → ∞ where the convergence is convergence in distribution. And thus, by Slutsky’s

theorem (15 ), we have that

Covθo(
√

n(θ̂n − θo)) → U(θo)(U
T (θo)I(θo)U(θo))

−1UT (θo) = B(θo) (32)

where the convergence is in distribution. Since this is the CCRB in equation 11, this shows

that the CMLE is asymptotically efficient. The result in equation 18, combined with

equation 32, prove the theorem.

Theorem 2 is parallel to the classical asymptotic normality property for the classical

(unconstrained) maximum likelihood estimate (4 ). And, this serves as another verification

of the CCRB result in equation 11. In fact, in the absence of constraints, then

U(θo) = IN×N since f is null, and provided the FIM is nonsingular, we have the classical

asymptotic MLE result as well. The result in equation 12 was earlier shown by Osborne

(5 ), but only for linear constraints, and no link was made regarding the constrained CRB.
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4. Scoring with Constraints

An analytic, closed-form solution of the MLE is sometimes found from the first order

conditions on the log-likelihood (the KKT equations equations 20 through 24 with null

constraint functions), i.e., by solving for θ̂ in

∂

∂θ
log p(x; θ)

∣∣∣∣
θ=θ̂

= 0.

Solutions are the stationary points, and if a unique solution exists, it is the MLE. Similarly,

a solution for the CMLE can be found by solving for the zero point of the arc θ̃(t) satisfying

d

dt
log p(x; θ̃(t))

∣∣∣∣
t=0

= 0

for any feasible arc θ̃ : R → Θ parameterized by t. Again, if a unique solution exists, θ̃(0)

is the CMLE.

In general, however, analytic solutions of the MLE and CMLE problem are unavailable.

This motivates the use of iterative procedures to attain the CMLE. In this section, we

derive a generalization of the classical scoring algorithm by incorporating the side

information contained in the constraints. This new method will include a projection step

and a restoration step to ensure that each of the iterates remains both feasible and usable.

4.1 The Projection Step

The simplest iterative schemes are gradient methods of the form

θk+1 = θk + αk · dk, (33)

where αk > 0 and dk ∈ RN are suitably chosen sequences of step sizes and step directions.

Before continuing, it is appropriate to define a few terms relating to such iterative schemes

(13,14,20,21,22 ). Given a feasible point θ, a feasible step consists of a step direction d and

step size α such that θ + αd is also a feasible point. Thus, by suitably chosen, we mean in

part that the sequences αk and dk are chosen such that θk is feasible for every positive

integer k. However, not every sequence of feasible steps results in a sequence of feasible

points which converges to a (local) minimum of the objective function. Thus, a usable step

consists of a step direction d and step size α such that the corresponding evaluation of the

objective is less than that of the previous iterate, i.e.,

− log p(x; θ) > − log p(x; θ + αd).
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So, a suitably chosen sequence of step sizes and step directions is a sequence of feasible and

usable steps.

Of particular importance in the class of gradient methods is the subclass of Quasi-Newton

methods of the form

θk+1 = θk − αkDk∇θ log p(x; θk)

where Dk is a sequence of positive definite symmetric matrices. In general, the gradient is

of the objective function, which in our case is the negative log-likelihood function. Since

the gradient of the objective function is the direction of steepest ascent, it’s negative is the

direction of steepest descent. The matrix Dk then projects this direction vector to some

purpose, dictated by the model. This class of methods includes

1. the method of steepest descent, where Dk = IN×N ,

2. Newton’s method, where Dk = (∇2
θ log p(x; θk))

−1, as well as,

3. the method of scoring, where Dk = −I(θk).

The method of steepest descent often leads to slow, linear convergence rates. Newton’s

method uses a quadratic approximation to converge quadraticly, and thus faster, but

requires a second-order differentiation. The method of scoring asymptotically stabilizes the

iteration statistically by exchanging the Hessian of the objective with it’s expected value,

the negative FIM. As evident in the equalities in equations 17 and 10, this also removes the

need for computing a second-order derivative, albeit in exchange with the required

evaluation of an expectation (integral). None of these methods, however, consider the

information and restrictions from the constraints.

To incorporate constraints6, we return to the necessary conditions for a stationary point of

the Lagrangian, in particular equations 25 and 20,

−∇T
θ log p(x; θ̂(x)) + µ̂T (x)F (θ̂(x)) = 0 (34)

f(θ̂(x)) = 0. (35)

Again, if θ̂(x) is regular then the above equations completely determine the CMLE;

however, the solution is difficult to obtain analytically. Let θ1 ∈ Θ be a given point near

the CMLE θ̂(x); so θ1 is a sufficiently close approximation of θ̂(x) which also satisfies the

6There a numerous ways to incorporate these constraints, e.g., using a directional Taylor approximation
of the likelihood as discussed in appendix B, applying the method of Newton elimination, or using a general
Taylor approximation of the Lagrangian optimality condition as discussed here.
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constraints. Now, consider the Taylor approximations of equations 34 and 35 about θ1

evaluated at a nearby point θ:

−∇θ log p(x; θ1) −∇2
θ log p(x; θ1)(θ − θ1) + F T (θ)µ = 0 (36)

f(θ1) + F (θ1)(θ − θ1) = 0. (37)

Since θ̂(x) is locally unique in equations 34 and 35, then by dropping the higher order

terms and yet still forcing the equality with 0, θ would be a closer point to θ̂(x) than θ1 is.

But we still need to solve for θ to obtain this better approximation. To add to this

difficulty, µ is also unknown since it is an approximation of µ̂(x) which is also unknown.

In matrix form, equations 36 and 37 are

[
−∇2

θ log p(x; θ1) F T (θ1)
F (θ1) 0

]
·
[
θ − θ1

µ − µ1

]
=

[
∇θ log p(x; θ1) − F T (θ1)µ1

−f(θ1)

]
(38)

where we exchanged a term in equation 36 via the first order approximation

F T (θ1)µ ≈ F T (θ)µ for small µ (9 ) and added −F T (θ1)µ1 to both sides, where µ1 is a

chosen initialization. (The choice of µ1 will be irrelevant to our end result.) The matrix is

commonly referred to as the KKT matrix, and the system as a KKT system (18 ). By

approximating the negative Hessian with the FIM, we have

[
I(θ1) F T (θ1)
F (θ1) 0

]
·
[
θ − θ1

µ − µ1

]
=

[
∇θ log p(x; θ1) − F T (θ1)µ1

−f(θ1)

]
. (39)

So, if either the KKT matrix is nonsingular, or θ1 is regular (so that F (θ1) has full row

rank) and the FIM is nonsingular, then one of the coefficient matrices on the LHS of

equations 38 and 39 must be nonsingular. Premultiplying equation 38 or 39 by the inverse

of their respective coefficient matrix, if it exists, and solving for θ and µ leads to an

iterative scheme where (θ, µ) are the updates of the given (θ1, µ1). Such a scheme

iteratively estimates the desired parameter estimate θ̂(x) as well as the accompanying

Lagrange multipliers µ̂(x) which satisfies equation 34. Such a method is presented in

(9,10 ).7 We do not desire such a method, since, in addition to increasing the number of

parameters needed to be estimated, the solution (θ̂(x), µ̂(x), ν̂(x)) may not be locally

unique, hampering convergence stopping criteria, even when the solution of θ̂(x) is unique.

Note that if the constraints f are linear and the negative log-likelihood is quadratic, then

there are no higher order terms and equations 40 and 41 (as well as equations 36 and 37)

7It is interesting to note that these authors use a formula (9, p.823 ) in their scheme that was later found
by Marzetta to be a variation of the CCRB formula applicable when the FIM for the unconstrained model
is invertible (2 ).

13



do not give approximations, but are exact, i.e., then θ = θ̂(x). Thus, solving for θ given θ1

can be done in one step in this case (see section 6.1).

However, if θ1 is not a regular point then the constraints include redundancy and the

coefficient matrices are not invertible (as can be seen from their Schur complements).

Likewise, if the FIM I(θ1) is singular, then the statistical KKT matrix in equation 39 is

not invertible. So it is desirable to find a scheme which does not rely on inverting these

possibly singular matrices. We can rewrite equation 39 as

I(θ1)(θ − θ1) + F T (θ1)(µ − µ1) = ∇θ log p(x; θ1) − F T (θ1)µ1 (40)

F (θ1)(θ − θ1) = −f(θ1). (41)

Premultiplying equation 40 by UT (θ1), we have

UT (θ1)I(θ1)(θ − θ1) = UT (θ1)∇θ log p(x; θ1). (42)

Solutions of (θ − θ1) in equation 42 are of the form

θ − θ1 = U(θ1)(U
T (θ1)I(θ1)U(θ1))

−1U(θ1)∇θ log p(x; θ1) + η (43)

where η ∈ Null(I(θ1)). Since, again, θ is a better approximation of θ̂(x) than θ1, this

alone motivates an iterative scheme for obtaining the CMLE θ̂(x). However, if possible, we

would like to incorporate equation 41 to eliminate the variable η and find the unique

solution to the approximated system in equation 39.

Define a continuous map V : RN → RN×(N−J) such that, for every θ ∈ RN , V (θ) is a

matrix whose columns form an orthonomal basis of the range space of the row vectors of

F (θ). Equivalently, the columns of V (θ) form an orthonormal basis of the nullspace of

U(θ) for each θ ∈ RN . Thus, UT (θ)V (θ) = 0, V T (θ)V (θ) = I(N−J)×(N−J) and,

consequently, U(θ)UT (θ) + V (θ)V T (θ) = IN×N . Using this identity of IN×N in equation

42,

UT (θ1)I(θ1)(U
T (θ1)U(θ1) + V T (θ1)V (θ1))(θ − θ1) = UT (θ1)∇θ log p(x; θ1). (44)

By definition, V (θ) = F T (θ)R(θ) for some map R : RN → RK×(N−J), so using equation

41 we have that

V T (θ1)(θ − θ1) = RT (θ1)F (θ1)(θ − θ1) = −RT (θ1)f(θ1).

But θ1 ∈ Θ so f(θ1) = 0. Thus, V (θ1)(θ − θ1) = 0 as well, and equation 44 is now

UT (θ1)I(θ1)U(θ1)U
T (θ1)(θ − θ1) = UT (θ1)∇θ log p(x; θ1). (45)
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Multiplying (UT (θ1)I(θ1)U(θ1))
−1 to both sides of equation 45, we have

UT (θ1)(θ − θ1) = (UT (θ1)I(θ1)U(θ1))
−1UT (θ1)∇θ log p(x; θ1).

Thus, the additional information from equation 41 eliminates the η term in equation 43,

and the solution is

θ − θ1 = (U(θ1)U
T (θ1) + V (θ1)V

T (θ1))(θ − θ1)

= U(θ1)U
T (θ1)(θ − θ1)

= U(θ1)(U
T (θ1)I(θ1)U(θ1))

−1UT (θ1)∇θ log p(x; θ1).

So if θ1 ∈ Θ is a close approximation of the CMLE θ̂(x) then θ2 = θ is a closer one. This

prompts the following iterative scheme, a variation on the method of scoring

θk+1 = θk + U(θk)(U
T (θk)I(θk)U(θk))

−1UT (θk)∇θ log p(x; θk)

= θk + B(θk)∇θ log p(x; θk) (46)

which, instead of using the CRB as the projection matrix, uses the CCRB8. It is important

to note here that this is not another Quasi-Newton method, as the corresponding

premultiplying matrix Dk is not positive definite, but rather postive semi-definite. Indeed,

for U(θk)(U
T (θk)I(θk)U(θk))

−1UT (θk) to be positive definite, U(θk) would necessarily be

full row rank which requires that F (θk) be null, i.e., an unconstrained model,

corresponding to the classical method of scoring.

This constrained scoring formulation, as experienced with the Newton or classical scoring

algorithm, does not necessarily lead to convergent sequences. To better control this

behavior, an additional variational parameter αk is introduced to control the step size. The

modification is

θk+1 = θk + αkB(θk)∇θ log p(x; θk) (47)

where the step size αk satisfies some appropriate step size rule that will guarantee usability

and will stabilize the convergence. Another motivation for this addition is the lack of

knowledge of what Lipschitz condition the objective satisfies. If we did have that

knowledge, we could possibly choose a fixed step size αk = s that enables the iteration to

be a local contraction mapping. Since that information is not known, we instead must

employ a rule with a variable step size (22 ), such as:

8A special case of equation 46 for linear constraints was presented in (5 ). And a specific formulation of
equation 46 exists for the conventional optimization problem, again with linear constraints, in (20, p. 178).
Since that problem is non-statistical, in place of the FIM is the Hessian of the Lagrangian. Our problem is
statistical, and so we instead estimate the Hessian with the FIM.
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1. A minimization rule.

2. A diminishing step size rule.

3. A successive step-size rule (e.g., the Armijo rule).

The minimization rule chooses the optimal αk that minimizes the corresponding objective

for each iterate. This rule relies on a one-line search for each iterate. A possible variation is

to restrict αk to some finite interval. The diminishing step size rule chooses a sequence

{αk} with the restriction that αk → 0 while
∑∞

k=1 αk = ∞. A particular step size, however,

might result in a greater negative log-likelihood, so this method still requires a check to

guarantee usability. If a particular step is not usable, the rule might be adjusted to skip

sufficient elements of the sequence until the step is usable. The Armijo rule chooses a

sequence defined by

αk = βmks (48)

where mk is the first nonnegative integer m such that

log p(x; θk+1) − log p(x, θk) ≥
σ

βms
‖θk − θk+1‖2 (49)

and σ, β, and s are fixed scalars with 0 < σ < 1, 0 < β < 1, and 0 < s. If θk is a stationary

point, then αk is set to 0. The check in equation 49 guarantees that the steps of each

iterate are usable.

4.2 The Restoration Step

To eliminate the η variable in equation 43, we used the fact that the first iterate θ1 was a

point in the constraint set Θ. However, the next iterate θ2 is not guaranteed to satisfy the

constraints since it is the solution of the Taylor approximations in equations 36 and 37.

The projection matrix is constant, so between iterates the search (over αk) is

one-dimensional or linear, which moves away from any nonlinear constraint. In fact, it is

only guaranteed to satisfy the constraints if they are linear. Thus, while the sequence

generated by equation 47 may converge, it may not converge to a point in the constraint

set Θ. The process to correct this error is called the restoration step.

We restore the second iterate back onto the constraint set Θ using a projection. Since Θ is

convex, the projection theorem favors using the natural projection for this step. When the

projection is the natural one, the projection theorem says it is uniquely determined. Let

π : RN → Θ be the natural projection of RN -space onto Θ. Then the method of scoring

with constraints, or the CSA, is given by

θk+1 = θk(αk) = π[θk + αkB(θk)∇θ log p(x; θk)] (50)
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where αk satisfies one of the previously listed step size rules. This is similar to a two-metric

projection method which typically has improved performance over simple gradient

projections (22 ).

It is desirable that the projection be a somewhat simple operation, e.g., planar or spherical

restrictions, so as not to be a computational burden. However, constraint sets may arise

where the projection cannot be expressed analytically. For these scenarios, we present the

following scheme to minimize the error away from Θ to a predetermined acceptable level

(20 ).

Suppose θ
(1)
i , for some i, is a regular point generated by the RHS of equation 47 not in the

constraint set Θ. Then f(θ
(1)
i ) 6= 0. Let θi be the nearest point to θ

(1)
i that does satisfy

the constraints, so that f(θi) = 0. Then a Taylor approximation of f(θi) = 0 about θ
(1)
i

evaluated at θ is given by

0 = f(θ
(1)
i ) + F (θ

(1)
i )(θ − θ

(1)
i ).

As with equation 37, we have in θ a point closer to θi than θ
(1)
i is. Solutions of θ are of the

form

θ = θ
(1)
i − F T (θ

(1)
i )(F (θ

(1)
i )F T (θ

(1)
i ))−1f(θ

(1)
i ) + ζ

where ζ ∈ Null(UT (θ
(1)
i )). Note the requirement that θ

(1)
i be regular is necessary for the

inverse of F (θ
(1)
i )F T (θ

(1)
i ) to exist. The restoration update is then given by

θ
(k+1)
i = θ

(k)
i − F T (θ

(k)
i )(F (θ

(k)
i )F T (θ

(k)
i ))−1f(θ

(k)
i ) + ζ. (51)

4.3 Implementation of the Constrained Scoring Algorithm

The CSA is in the class of null-space algorithms, exploiting U(θ) directly. Instead of

employing the Hessian or the FIM as done in Quasi-Newton methods, we employ the

singular CCRB matrix to minimize the constrained score function.9 In fact, given the

unconstrained FIM I(θ), equation 46 or 50 provides a simple algorithm to verify CML

performance. Otherwise, given a good initialization, equation 50 provides a method to

obtain CML performance. This can be considered fine-tuning the estimate that provides

the initialization.

If the quadratic negative log-likelihood model holds, and the constraints are linear, then

when initialized with a feasible point, the CSA solves the CMLE in a single step. This is

shown in detail in section 6.1.

9The CCRB is only positive semidefinite, not positive definite, since the null space matrix U(θ) can never
be full row rank when constraints are applied.
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The components of the CSA (see figure 1) include the restoration steps in equation 51 (if

the projection is not simple), the matrix inverse component of the CCRB in equation 50,

and the evaluation of an expectation (an integration) in the FIM. To reduce the complexity

(see table 1) of these tasks we mention some variations of equation 50.

Given the observations x,

1. Choose an initialization, typically θ1 = π(θ̂mle),
i.e., the projection of the MLE onto Θ.

2. Evaluate the decrement λ(θ1).
3. While λ(θk) > ε, for some threshold ε,

a. Evaluate the gradient ∇θ log p(x; θk).
b. Evaluate the CCRB B(θk).
c. Choose αk based on some rule so that

θk+1 = π[θk + αkB(θk)∇θ log p(x; θk)] is usable.
d. Reevaluate the decrement λ(θk+1).

(54)

(11)

(50)
(54)

Figure 1. The constrained scoring algorithm.

Table 1. Complexity of the CSA per iteration.

Matrix Complexity
U(θ) (given F (θ)) < N6

UT (θ)J(θ)U(θ) NJ(N + J)
(UT (θ)J(θ)U(θ))−1 J3

U(θ)(UT (θ)J(θ)U(θ))−1UT (θ) NJ(N + J)
B(θ)∇θ log p(x; θ) N2

λ(θ) N

If we have a closed form expression for the FIM I(θ), this eliminates the need to compute

an integral for each step. It is, however, highly unlikely to have an exact formulation for

the matrix inverse in the CCRB except in trivial or simple cases. A standard procedure in

optimization theory for gradient methods is to eliminate the need to compute a matrix

inversion for every step by reusing the initial inverse matrix. This adjustment leads to the

following variant of the CSA

θk+1 = θk(αk) = π[θk + αkU(θk)(U
T (θ1)I(θ1)U(θ1))

−1UT (θk)∇θ log p(x; θk)]. (52)

In this modified CSA, analogous to the modified Newton’s method, the matrix inversion

needs to be done only once, for the initial value. This procedure also requires only one

evaluation of an expectation (or integral) to obtain the initial FIM. Another standard

variation is to apply the inversion after every j > 1 iterations.
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If the projection is simple or, equivalently, the constraint set simply defined, e.g., planar,

spherical, or boundaries, then the restoration step is easily computed. However, if the

projection is not easily computed and an iterative scheme as in equation 51 is required, the

restoration step is somewhat tedious and may be time-consuming. Alternatively, the CSA

might be adjusted by only restoring occasionally. The procedure would then be to obtain

via equation 46 the ith iterate and then successively restore the iterate to the constraint set

via equation 51, and then to repeat the procedure.

Until now, we have also always assumed that the projection has been onto a convex set.

This condition guarantees that each projection in the restoration step is unique; this is

shown via the Projection Theorem (18,22 ). However, note that this condition was not used

in section 3, nor was convexity used in the development of the projection step. In either

case, only connectivity was required. This is important to point out, since every region

defined by a nonlinear equality constraint is nonconvex. However, these nonlinear equality

constraints are the ones of practical interest. So if we simply let Θ be a connected set, we

can make the following enhancement in the definition of π[·] in equation 50. Let

π : RN → Θ be the natural projection of RN -space onto Θ with the minimal distance. For

practical sets, e.g., a sphere in RN , the projection π[·] is almost everywhere unique.

Another implementation issue is when to stop the iterations. An obvious choice is to

measure the change in the likelihood after each iteration. For Newton’s method, another

stopping criteria is the Newton decrement (18 ),

λ(θ) = (∇T
θ log p(x; θ)(∇2

θ log p(x; θ))−1∇θ log p(x; θ))1/2. (53)

This is a norm with respect to the Hessian of the objective. Note λ(θk) decays as the

iterations converge to a stationary point. The corresponding decrement for constrained

scoring is

λ(θ) = (∇T
θ log p(x; θ)B(θ)∇θ log p(x; θ))1/2. (54)

This scoring decrement is shown to be 0 for stationary points in section 5. By a continuity

argument, it follows that the iterations are close to the stationary point when λ(θk) is

sufficiently small.

In the next section, we show that the CSA at least converges to a local maximum of the

likelihood. The only requirement is that UT (θ)I(θ)U(θ) be positive definite. However, this

is also a requirement for the existence of the CCRB (3 ).
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5. Convergence Properties

In this section, we examine convergence properties of the constrained scoring algorithm

motivated by the properties for projected gradient presented in (23 ). The obvious

statement regarding convergence is that the sequence of iterates {θk} has the CMLE θ̂(x)

as its limit provided the initial guess is sufficiently close. For convenience, we will choose to

analyze only the convergence properties of the CSA with the Armijo step size rule,

although it is not too difficult to modify these proofs for another rule. By construction, we

shall show the algorithm is one that converges to a local stationary point if there is indeed

a local minimum.

Let {θk} be any sequence generated by the constrained scoring algorithm. Thus, θ1 is an

arbitrarily chosen feasible point, and successive iterates are determined by the CSA in

equation 50. (Of course, θ1 would not be chosen so randomly, but we ignore this aspect of

the convergence for the moment.) Define Σθk
= {θ ∈ Θ|p(x; θ) ≥ p(x; θk)}.10

Now, by definition of the chosen Armijo rule equation 49, it can be seen that

log p(x; θk) ≤ log p(x; θk+1)

for every positive integer k. Thus, we have the following fact about {θk}:

Property 1. The sequence {− log p(x; θk)} is a monotone decreasing sequence.

Furthermore, if − log p(x; θ) is bounded below then {− log p(x; θk)} converges.

Thus, given an iterate θk, all succesive iterates are contained in Σθk
, i.e., θj ∈ Σθk

for all

j ≥ k. The second statement is simply the monotone convergence principle from analysis.

And, by the monotonicity of − log(·), then {p(x; θk)} is also a convergent sequence when

{− log p(x; θk)} is. We will assume that the likelihood is bounded above, so that this

sequence always converges. This leads to the following result:

Property 2. The sequence {‖θk+1 − θk‖} vanishes as k → ∞.

Proof. Again from equation 49 we have that ‖θk+1 − θk‖2 is bounded by the product of an

iterate from a sequence bounded below and log p(x, θk+1) − log p(x; θk). Since

{log p(x; θk)} converges, the bound is made arbitrarily small for sufficiently large k. Thus,

the same is true for ‖θk+1 − θk‖.
10In this section, we will assume Θ is convex so that π[·] is the natural projection.
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This does not imply that the sequence {θk} converges. However, if Σθk
is bounded, then

the Bolzano-Weierstrass theorem (19 ) implies the existence of a cluster, or accumulation,

point, i.e., the existence of a subsequence that does converge.

Property 3. If Σθ1 is compact, then cluster points of the sequence {θk} are also

stationary points.

Recall, a point θ is stationary if it satisfies the KKT condition equations 20 through 24.

The initial iterate is feasible and the restoration π[·] preserves feasibility. Since we’ve

incorporated the active constraints into f , the only additional condition is equation 25. So

if θ∗ is a stationary point, then

∇T
θ log p(x; θ∗)U(θ∗) = µ∗TF (θ∗)U(θ∗) = 0.

Hence, B(θ)∇θ log p(x; θ∗) = U(θ)(UT (θ)I(θ)U(θ))−1UT (θ)∇θ log p(x; θ∗) = 0. Thus, a

point is stationary only if

θ∗(α) = π[θ∗ + αB(θ)∇θ log p(x; θ∗)] = π(θ∗) = θ∗.

By definition of the Armijo rule, we also have α = 0 at stationary points. While this step is

necessary in the method of gradient projection, it is not so here as can be seen above, since

the end result would hold regardless.

Proof of Proposition 3. Let θ∗ be a cluster point of the sequence θk. Then there exists a

convergent subsequence θnk
which has θ∗ as its limit. Note, by the triangle inequality,

∥∥π[θ∗ + α∗U(θ∗)(UT (θ∗)I(θ∗)U(θ∗))−1UT (θ∗)∇θ log p(x; θ∗)] − θ∗∥∥
≤ ‖π[θ∗ + α∗B(θ∗)∇θ log p(x; θ∗)] − θ∗‖
≤ ‖π[θ∗ + α∗B(θ∗)∇θ log p(x; θ∗)] − π[θnk

+ αnk
B(θnk

)∇θ log p(x; θnk
)]

+π[θnk
+ αnk

B(θnk
)∇θ log p(x; θnk

)] − θnk
+ θnk

− θ∗‖
≤ ‖π[θ∗ + α∗B(θ∗)∇θ log p(x; θ∗)] − π[θnk

+ αnk
B(θnk

)∇θ log p(x; θnk
)]‖

+ ‖π[θnk
+ αnk

B(θnk
)∇θ log p(x; θnk

)] − θnk
‖ + ‖θnk

− θ∗‖ . (55)

Since the projection π is onto a convex set Θ, the distance between two points in RN is at

least as great as the distance between the projections of those two points. Thus, we have

‖π[θ∗ + α∗B(θ∗)∇θ log p(x; θ∗)] − π[θnk
+ αnk

B(θnk
)∇θ log p(x; θnk

)]‖
≤ ‖θ∗ + α∗B(θ∗)∇θ log p(x; θ∗) − θnk

− αnk
B(θnk

)∇θ log p(x; θnk
)‖ .(56)
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Thus, applying the inequality of equation 56 to 55 we have

∥∥π[θ∗ + α∗U(θ∗)(UT (θ∗)I(θ∗)U(θ∗))−1UT (θ∗)∇θ log p(x; θ∗)] − θ∗∥∥
≤ ‖θ∗ + α∗B(θ∗)∇θ log p(x; θ∗) − θnk

+ αnk
B(θnk

)∇θ log p(x; θnk
)‖

+ ‖π[θnk
+ αnk

B(θnk
)∇θ log p(x; θnk

)] − θnk
‖ − ‖θnk

− θ∗‖
≤ ‖θ∗ − θnk

‖ + ‖α∗B(θ∗)∇θ log p(x; θ∗) − αnk
B(θnk

)∇θ log p(x; θnk
)‖

+ ‖π[θnk
+ αnk

B(θnk
)∇θ log p(x; θnk

)] − θnk
‖ + ‖θnk

− θ∗‖ (57)

≤ 2 ‖θnk
− θ∗‖ + ‖θnk+1 − θnk

‖
+ ‖α∗B(θ∗)∇θ log p(x; θ∗) − αnk

B(θnk
)∇θ log p(x; θnk

)‖ (58)

where the triangle inequality is applied to obtain equation 57, and the CSA iteration in

equation 50 is used to obtain equation 58. Taking the second term in equation 58, and

applying the triangle inequality yet again, the last term of equation 58 is bounded as

‖α∗B(θ∗)∇θ log p(x; θ∗) − αnk
B(θnk

)∇θ log p(x; θnk
)‖

≤ ‖α∗B(θ∗)∇θ log p(x; θ∗) − α∗B(θ∗)∇θ log p(x; θnk
)

+ α∗B(θ∗)∇θ log p(x; θnk
) − αnk

B(θnk
)∇θ log p(x; θnk

)‖
≤ ‖α∗B(θ∗)∇θ log p(x; θ∗) − α∗B(θ∗)∇θ log p(x; θnk

)‖
+ ‖α∗B(θ∗)∇θ log p(x; θnk

) − αnk
B(θnk

)∇θ log p(x; θnk
)‖

≤ ‖α∗B(θ∗)(∇θ log p(x; θ∗) −∇θ log p(x; θnk
))‖

+ ‖(α∗B(θ∗) − αnk
B(θnk

))∇θ log p(x; θnk
)‖ . (59)

In Euclidean space (or any normed space), we have the property that ‖Mv‖ ≤ ‖M‖ · ‖v‖
for any matrix M and vector v (24 ). Thus equation 59 becomes

‖α∗B(θ∗)∇θ log p(x; θ∗) − αnk
B(θnk

)∇θ log p(x; θnk
)‖

≤ ‖α∗B(θ∗)‖ ‖∇θ log p(x; θ∗) −∇θ log p(x; θnk
))‖

+ ‖(α∗B(θ∗) − αnk
B(θnk

))‖ ‖∇θ log p(x; θnk
)‖ . (60)

Substituting equation 60 into 58, we have

∥∥π[θ∗ + α∗U(θ∗)(UT (θ∗)I(θ∗)U(θ∗))−1UT (θ∗)∇θ log p(x; θ∗)] − θ∗∥∥
≤ 2 ‖θnk

− θ∗‖ + ‖α∗B(θ∗)‖ ‖∇θ log p(x; θ∗) −∇θ log p(x; θnk
))‖

+ ‖(α∗B(θ∗) − αnk
B(θnk

))‖ ‖∇θ log p(x; θnk
)‖ + ‖θnk+1 − θnk

‖ .(61)

Since Σθ1 is compact, then ‖θnk
‖ and ‖∇θ log p(x; θnk

)‖ are bounded. Note the inequality

holds for all nk, so let nk → ∞. Then we have that θnk
→ θ∗, and by continuity,
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∇θ log p(x; θnk
) → ∇θ log p(x; θ∗) and αnk

B(θnk
) → α∗B(θ∗). Now the first term of

equation 61 vanishes by Property 2. Thus, the right side of equation 61 can be made

arbitrarily small and, therefore,

π[θ∗ + α∗U(θ∗)(UT (θ∗)I(θ∗)U(θ∗))−1UT (θ∗)∇θ log p(x; θ∗)] = θ∗,

i.e., θ∗ is stationary. The statement holds true as well if Σθn is compact for some positive

integer n.

Property 4. If Σθ1 is compact for all sequences in a set Θ
′
and there is a unique cluster

point θo for all such sequences then limk→∞ θk = θo for every sequence {θk}. Also, θo is

the minimum of − log p(x; θ).

Essentially, if only one accumulation point exists for all such sequences, it must be the

CMLE, i.e., limk→∞ θk = θ̂(x).

6. The Linear Model with Constraints

Suppose we have a vector of observations x of a parameter vector ϑ given by the following

linear model

x = Hϑ + n (62)

where H is a known observation matrix and n is random noise from N (0, C) with known

covariance C. The true parameter vector will be ϑo. To be general, we will assume all

parameters are complex-valued. The MLE of this problem is well known (4, pp. 528 ), and

also happens to be the best linear unbiased estimator (BLUE) and the minimum variance

unbiased (MVU) estimator:

ϑ̄(x) = (HHC−1H)−1HHC−1x. (63)

This MLE is also efficient, i.e., it has a covariance matrix equal to the complex CRB

Cϑ = Eϑo(ϑ̄ − ϑo)(ϑ̄ − ϑo)
H = (HHC−1H)−1 = I−1(ϑo).

where I(ϑ) is the complex Fisher information matrix (4, p. 529) of the model. Note here

that the log-likelihood is quadratic with respect to ϑ; thus the Fisher score is11

∇ϑ log p(x; ϑ) = HT C−∗(x∗ − H∗ϑ∗)

11There are numerous definitions of the complex derivative. We define it to be ∂
∂α = 1

2 ( ∂

∂(Reα)
− j ∂

∂(Imα)
)

for complex-valued α. A benefit of this definition is that numerous results are preserved for strictly real-
valued parameters.
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and the Hessian is

∇2
ϑ log p(x; ϑ) = −HHC−1H = −I(ϑ).

Hence, the FIM and CRB are constant in ϑ. Thus, for convenience in this section, we will

simply denote the FIM as I.

The complex model can be described in terms of real-valued parameters as well. Define

θ =
[
Re(ϑ)T , Im(ϑ)T

]T
, then the real-valued FIM is given by

I(θ) = I = 2

[
Re(I) −Im(I)
Im(I) Re(I)

]
= 2

[
Re(HHC−1H) −Im(HHC−1H)
Im(HHC−1H) Re(HHC−1H)

]
.

In which case, the Fisher score is now

∇θ log p(x; θ) = 2

[
Re

(
HHC−1(x − Hϑ)

)

Im
(
HHC−1(x − Hϑ)

)
]

.

The Hessian, likewise, is still the negative FIM. The necessity of converting the FIM and

score to the real parameter case is so we may apply the CSA in the following.

6.1 Linear Constraints

Now, suppose that linear constraints are imposed on the parameters, i.e.,

Θ = {ϑ : f(ϑ) = Fϑ + ν = 0} (64)

where F and ν are known. We assume that Θ is nonempty. Then F(ϑ) = F for all ϑ. If

we assume that Θ is regular, i.e., F is full row rank, and that H is full column rank, then

the CMLE is given by the constrained least squares estimator (CLSE) (4, p. 252 )

ϑ̂CLSE(x) = ϑ̄(x) − I−1FH
(
FI−1FH

)−1 (
Fϑ̄(x) + ν

)
(65)

=
(
I−1 − I−1FH

(
FI−1FH

)−1 FI−1
)

Iϑ̄(x)

−I−1FH
(
FI−1FH

)−1
ν (66)

The first term of this last equation uses the Marzetta derivation of the CCRB for the

expression in the parenthesis, albeit in complex form. Given this knowledge, it can be

shown that this estimator is unbiased and efficient, a result that appears to be

undocumented in the literature, even for the real parameter case.12 The second term in

12For completeness, a proof of the unbiasedness and efficiency of equation 65 is presented in appendix C.
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equation 66 is a specific feasible point of the constraint set. However, this formulation

requires both a nonsingular complex FIM I (or, equivalently, a full column rank H) and a

full row rank F , conditions which may not hold. Using the CSA to circumvent these

conditions essentially turns the problem into a standard nullspace quadratic exercise (13 ).

First, we need to convert the problem to real-valued parameters. Note that equation 64 is

equivalent to the following real-parameter constraint set

Θ
′
=

{
θ : f

′
(θ) = Fθ + v = 0, where F =

[
Re(F) −Im(F)
Im(F) Re(F)

]
, v =

[
Re(ν)
Im(ν)

]}
(67)

Let U(θ) = U be the matrix defined by equation 5. It can be shown that if U(ϑ) = U is

defined to be the matrix whose columns form an orthonormal basis of F so that FU = 0

and UHU = IJ×J , then

U =

[
Re(U) −Im(U)
Im(U) Re(U)

]
. (68)

Let ϑ1 be any vector satisfying the constraints so that ϑ1 ∈ Θ. For example, if the space is

still regular (F is full row rank), then ϑ1 = −FH(FFH)−1ν is such a point vector,

otherwise let ϑ1 = −F †ν; however, note that any feasible point vector will work. Note,

θ1 = [Re(ϑ1)
T , Im(ϑ1)

T ]T is the corresponding point in Θ
′
. As stated earlier, since the

log-likelihood is quadratic and the constraints linear, the equations 40 and 41 are exact, so

the restoration step and the variable step size in the CSA equation 50 are unnecessary, i.e.,

the CMLE is found in one step to be the linear estimator given by

θ̂(x) = θ1 + B(θ1)∇θ log p(x; θ1)

= θ1 + U(UT I(θ1)U)−1UT∇θ log p(x; θ1)

=

[
Re(ϑ1)
Im(ϑ1)

]
+

[
Re(BHHC−1(x − Hϑ1))
Im(BHHC−1(x − Hϑ1))

]

⇒ ϑ̂(x) = ϑ1 + BHHC−1(x − Hϑ1)

where B = B(ϑ) = U(UT I(ϑ)U)−1UT is defined similarly as in equation 11 to be the

complex CCRB for this constrained problem.13 Comparing this CMLE result with the prior

CLSE result in equation 65, we see the only requirement now is that HU be full column

rank, whereas equation 65 required both H to be full column rank and F to be full row

rank. In other words, the prior solution requires information-regularity and a regular point

solution in the original problem; the solution given here only requires the alternative

information-regularity condition (see Theorem 1 or (3 )). This leads to the following result.

13It should be emphasized that the complex CCRB is of the form given by B only for this particular choice
of constraint. For general constraints, the covariance matrix of the real-parameter estimator may not assume
the necessary form (4, pp. 524-532 ).
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Theorem 3. If the observations x are described by a linear model of the form

x = Hϑ + n

where H is a known matrix, ϑ is an unknown parameter subject to the linear constraint

f(ϑ) = Fϑ + ν = 0 with the true parameter being ϑo, and n is a noise vector with PDF

N (0, C), then provided HU is full column rank where U is given by equation 5, the CMLE

of ϑo is given by

ϑ̂(x) = ϑ1 + BHHC−1(x − Hϑ1) (69)

where B is the CCRB and ϑ1 is any arbitrary feasible point (e.g., ϑ1 = F †ν). ϑ̂(x) is

unbiased and is an efficient estimator which attains the CCRB and, therefore, is the BLUE

and the MVU estimator. Furthermore, when H is full column rank and F is full row rank,

then ϑ̂(x) ≡ ϑ̂CLSE(x).

Proof. First note that since FB = 0, the estimator satisfies the constraints:

f(ϑ̂(x)) = F
(
ϑ1 + BHHC−1(x − Hϑ1)

)
+ ν = Fϑ1 + ν = f(ϑ1) = 0.

Next, from equation 41 ϑo − ϑ1 = Uη for some η ∈ CJ since by a Taylor expansion

0 = f(ϑo) = F · (ϑo − ϑ1). Hence, we have the following convenient property:

BHT C−1H(ϑo − ϑ1) = U(UHHHC−1HU)−1UHHHC−1HUη

= Uη

= ϑo − ϑ1.

Thus, the CMLE is also unbiased:

Eϑoϑ̂(x) = ϑ1 + BHHC−1Eϑo(x − Hϑ1)

= ϑ1 + BHHC−1H(ϑo − ϑ1)

= ϑ1 + ϑo − ϑ1

= ϑo
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and the estimator is efficient, i.e., its covariance matrix is the CCRB:

Eϑo(ϑ̂(x) − Eϑoϑ̂(x))(ϑ̂(x) − Eϑoϑ̂(x))H

= Eϑoϑ̂(x)ϑ̂H(x) − ϑoϑ
H
o

= Eϑo[(ϑ1 + BHHC−1(x − Hϑ1))(ϑ1 + BHHC−1(x − Hϑ1))
H ] − ϑoϑ

H
o

= Eϑo[(ϑ1 + BHHC−1(n + H(ϑo − ϑ1))(ϑ1 + BHHC−1(n + H(ϑo − ϑ1))
H ] − ϑoϑ

H
o

= ϑ1ϑ
H
1 + ϑ1(ϑo − ϑ1)

HHHC−1HB + BHHC−1EϑonnHC−1HB
+BHHC−1H(ϑo − ϑ1)ϑ

H
1 + BHHC−1H(ϑo − ϑ1)(ϑo − ϑ1)

HHHC−1HB − ϑoϑ
H
o

= ϑ1ϑ
H
1 + ϑ1(ϑo − ϑ1)

H + (ϑo − ϑ1)ϑ
H
1 + (ϑo − ϑ1)(ϑo − ϑ1)

H − ϑoϑ
H
o

+BHHC−1CC−1HB
= BHHC−1HB
= U(UHHHC−1HU)−1UH = U(UHIU)−1UH = B.

So this more general CMLE is also the BLUE as well as the MVU estimator in the general

linear model under the linear constraint. To see equivalence to the CLSE expression

equation 65, assume that the FIM I is nonsingular and the constraint space Θ is regular.

Then, B = I−1 − I−1FH(FI−1FH)−1FI−1, i.e., the Stoica CCRB formulation and the

Marzetta formulation are identical (3 ), and so

ϑ̂(x) = ϑ1 + BHHC−1(x − Hϑ1)

= BHHC−1x − (BHHC−1H − IN×N)ϑ1

= BIϑ̄(x) − (BI − IN×N)ϑ1

= BIϑ̄(x) + I−1FH(FI−1FH)−1Fϑ1

= BIϑ̄(x) − I−1FH(FI−1FH)−1ν

= (I−1 − I−1FH(FI−1FH)−1FI−1)Iϑ̄(x) − I−1FH(FI−1FH)−1ν

= ϑ̄(x) − I−1FH(FI−1FH)−1(Fϑ̄(x) + ν)

= ϑ̂CLSE(x).

In addition to being an alternative CMLE, equation 69 is also an alternative CLSE.

6.2 Nonlinear Constraints

As an example of nonlinear parametric constraints imposed on equation 62, we consider the

constraint set Θ =
{
θ : fi(ϑi) = |ϑi|2 − 1 = 0, i = 1, 2, . . . , N

}
where all the elements of ϑ

are restricted to be of unit modulus. This was one of the constraints applied in (12 ) in the

evaluation of performance bounds of a different model. It should be noted that this set is
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not convex, but natural projections from R2N onto Θ are a.e. unique, i.e., unique except on

a set {θ : ϑi = 0 for any i} of measure zero. The gradient matrix of the constraints is then

F (θ) = 2
[
Re(T (ϑ)) Im(T (ϑ))

]

where T (ϑ) = diag(ϑ), i.e., a diagonal matrix with ith row-column element ϑi. A matrix

whose columns form an orthonormal null space of F (θ) was found in (12 ) to be

U(θ) =

[
Im(T (ϑ))
−Re(T (ϑ))

]
.

This results in the following CCRB:

B(θ) = U(θ)(UT (θ)I(θ)U(θ))−1UT (θ)

=
1

2

[
Im(T (ϑ))
−Re(T (ϑ))

]
·
(
Re(T H(ϑ)HHC−1HT (ϑ))

)−1 ·
[
Im(T (ϑ)) −Re(T (ϑ))

]
.

Thus the CSA is given by

θk+1 = π [θk + αkB(θk)∇θ log p(x; θk)]

= π

[
θk + αk

[
Im(T (ϑk))
−Re(T (ϑk))

]
×

(
Re(T H(ϑk)HHC−1HT (ϑk))

)−1 · Im
(
T H(ϑk)HHC−1(x − Hϑk)

)]

where π is the projection onto Θ and the relation θk =
[
Re(ϑk)

T , Im(ϑk)
T
]T

holds for all k.

For simulation, we randomly selected the complex elements for an 8 × 8 observation matrix

H from the standard normally distributed number generator provided in MATLAB, and

randomly generated unit modulus elements for the constrained θ vector. We consider the

average performance of the C−1-norm of (x − Hϑ) and average performance of the

mean-square error (MSE) of ϑ over n = 5000 realizations of the noise n modeled as

spatially white; so C = σ2I8×8 with σ2 = 1
10

. In the CSA we employ the diminishing step

size rule with αk = 1
k
. (All steps were usable.) For comparison we temporarily ignored the

stopping criteria by choosing an infinitesimal bound requirement on the decrement. A

reasonable, close initial estimate of the CMLE is the projection of the MLE equation 63

onto Θ, i.e.,

ϑ1 = π[ϑ(x)] = π
[(

HHC−1H
)−1 HHC−1x

]
.

This initial value, as one would expect, turns out in general not to be the CMLE. However,

the estimate is often (but not always) a very good initialization, as revealed in figure 2.

The norm error, given by 1
n

∑n
i=1 ‖xi − Hϑ‖, vs. the iterate is nearly identical for any
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Figure 2. The average norm of x − Hϑk at iteration k. There is significant gain in
the first iterate compared with later iterates, as expected with a quadratically
convergent sequence.

particular realization. This metric is key, since seeking to minimize the negative

log-likelihood of the linear model equation 62 is equivalent to minimizing the norm of

(x − Hϑ). So we see that the CSA does indeed maximize, at least locally, the

log-likelihood. A random local search could not provide a better global maximum, but does

make evident the need for a sufficiently close initialization to the CMLE for the CSA (or

any Newton-type algorithm) to successfully work in this example. As is evident, since the

negative log-likelihood is quadratic and the constraints nearly linear (in a neighborhood of

the CMLE) there is significant gain after merely the first one or two iterations as

convergence is nearly quadratic. Figure 3 compares the average MSE (per real parameter

coefficient) at iteration k to the CCRB given by 1
16n

∑n
i=1

∥∥∥ϑ̂k(xi) − ϑo

∥∥∥
2

; as can be seen,

the CMLE for this scenario achieves the CCRB. The numerical simulations also show this

particular CMLE to be asymptotically unbiased in figure 4. We calculated the average of

the absolute bias of the parameters, i.e.,

average bias =
1

16

16∑

j=1

∣∣∣∣∣
1

n

n∑

i=1

θ̂(xi)j − θj

∣∣∣∣∣ ,

where θ̂(xi)j and θj refer to the jth element of the vector (and not the iteration in this

case). An average error of .005 in both axes of the Cartesian plane roughly corresponds to

an average of less than a half-degree of error in the phases of each element of ϑ.
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Figure 3. Average mean-square error of the CSA compared with the CCRB.
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Figure 4. Average bias error of the CSA.
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7. A Nonlinear Model Example

By a nonlinear model, we mean a model which is nonlinear with respect to the parameter

vector ϑ or θ. Unlike in the previous section, there is no inherent guarantee that

maximizing the likelihood also minimizes the MSE of the parameter vector. It depends on

the model. However, we still have the property that if an efficient estimator exists for the

constrained problem then it must be the CMLE. Recall the condition for equality with the

CCRB in Theorem 1:

θ̂(x) − θ = B(θ)∇θ log p(x; θ). (70)

This implies that

0 = θ̂(x) − θ̂(x) = B(θ̂(x))∇θ log p(x; θ̂(x)). (71)

When UT (θ̂(x))I(θ̂(x))U(θ̂(x)) is positive semidefinite, this implies that

∇θ log p(x; θ̂(x)) ∈ span (F T (θ̂(x)), which satisfies the Lagrangian equation 34. Thus, as

with the ML method, the CML method also produces an efficient estimator if it exists.

In this section we examine a scenario given in (12 ).

7.1 MIMO Instantaneous Mixing Model

Consider the multi-input, multi-output (MIMO) instantaneous mixing model where xn is a

vector of observations of a linear mixing of unknown parameters at time n = 1, . . . , N given

by the model

xn = Hsn + n (72)

where H is an unknown M × K complex-valued channel matrix, each sn is a

complex-valued data symbol vector, and the additive noise vector n is spatially and

temporally white with variance σ2. We define a vector of unknown parameters by

ϑ =




h(1)

s(1)

...
h(K)

s(K)




,

where h(k) is the kth column of H and s(k) = [s1(k), . . . , sN(k)]. Then the complex FIM

was found in (25 ) to be

I(ϑ) =
2

σ2
QHQ
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where Q =
[
Q(1), . . . , Q(K)

]
with Q(k) =

[
IM×M ⊗ s(k), h(k) ⊗ IM×M

]
. As detailed in (25 ),

this FIM is singular due to the multiplicative ambiguity inherent in the model. As before,

the model can be described in terms of the real-valued parameter vector

θ =
[
Re(ϑ)T Im(ϑ)T

]T
, which has a real-valued FIM given by

I(θ) = 2

[
Re(J(ϑ)) −Im(J(ϑ))
Im(J(ϑ)) Re(J(ϑ))

]
=

4

σ2

[
Re(QHQ) −Im(QHQ)
Im(QHQ) Re(QHQ)

]
.

By the structure of this matrix nullity(I(θ)) = 2 · nullity(J(ϑ)), so information-regularity

cannot be achieved without constraints. Sadler, et al., applied constant modulus and

semi-blind constraints on equation 72 to obtain a locally identifiable model (12 ). The

constraint set is

Θ =
{
θ : fk,n(θ) = |sn(k)|2 − 1 = 0, ∀k, n; ft(θ) = st(k) − st,k = 0, ∀k, t = 1, . . . , T

}

where the st,k are known. For this constraint set, the gradient matrix of the constraints

was found in (7 ) to be

F (θ) =
[
Re(F(ϑ)) Im(F(ϑ))

]

where

F(ϑ) =



F (1)(s(1), h(1))

. . .

F (K)(s(K), h(K))


 and F (k)(s(k), h(k)) = 2




IT×T

jIT×T
0 0

D(s(1)) 0


 ,

with D(s(1)) defined as in section 6.2. (Note that this construction of the gradient matrix

F (θ) is not regular since Θ contains redundancy in restricting some signal values to be

unit modulus as well as known values. Θ might be reformulated so the points are regular,

but this is unnecessary.) A matrix whose columns form an orthonormal null space of F (θ)

is given by

U(θ) =

[
Im(U(ϑ))
−Re(U(ϑ))

]

where

U(ϑ) =




U (1)(s(1), h(1))
. . .

U (K)(s(K), h(K))




and

U (k)(s(k), h(k)) =

[
0 −IM×M jIM×M

DT (s(k)) 0 0

]
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where DT (s(k)) is the matrix D(s(k)) with the first T rows removed. This results in the

following CCRB:

B(θ) = U(θ)(UT (θ)I(θ)U(θ))−1UT (θ)

=
σ2

4

[
Im(U(ϑ))
−Re(U(ϑ))

]
·
(
Re(UH(ϑ)QHQU(ϑ))

)−1 ·
[
Im(U(ϑ)) −Re(U(ϑ))

]
.

Note the similarity in the structure of the CCRB with that in section 6.2. This is,

generally, the form of the CCRB when the appropriate U(ϑ) matrix can be found. Note

that here U(ϑ) is not the null space of F(ϑ), but rather these matrices are convenient

expressions to formulate U(θ) and F (θ), respectively.

We simulated a K = 2 source, M = 2 channel model over N = 30 time samples. The

channel H is taken from the three-ray multipath case in (12 ) with directions-of-arrival

(DOAs) {−1, 0, 4} and corresponding complex amplitudes
{√

0.2∠−π
6

,
√

0.5,
√

0.15∠−π
5

}
for

source 1 and DOAs {0, 5, 11} and amplitudes
{√

0.15∠−π
5

,
√

0.6,
√

0.25∠π
3

}
for source 2.

The source elements were taken randomly from an 8-PSK alphabet. The constraints are

the modulus constraint as well as knowledge of the first T = 2 symbols for each source

discussed above. (FIM-regularity requires at least T = 1 training samples per source.)

Source 1 (i.e., s(1))) is normalized to have an SNR of 20 dB and the SNR of source 2 is set

at 15 dB. We can scale the channel to reflect these signal powers, i.e., for i = 1, 2

SNRi =

∥∥h(i)
∥∥2

Mσ2
,

which allows us to set the noise covariance to be σ2 = 1. We obtain an initialization via the

zero-forcing variant of the analytical constant modulus algorithm (ZF-ACMA) found in

(26 ). This estimate is projected onto the constraint set Θ and then we apply the CSA

using a successive step size scheme (αk = 1
2m for the smallest positve integer m that results

in a usable step). We calculate the average MSE (per real coefficient) at each iteration over

n = 2000 trials and compare with the mean CRB for each of the sources and channels.

The numerical simulations show the improvement in the average MSE of both the signals

and the channels (figure 5), on average halving the MSE of the initialization estimates

provided by ACMA in this instance. Note that after a certain number of iterations, the

MSE for both the channel and source elements are actually slightly increasing. This occurs

when the decrement λ(θk) is sufficiently close to 0 (see figure 6). Setting the stopping

criteria to be, e.g., λ(θk) < 1, achieves the least MSE from the CSA iterations. We note

that generally there is greater improvement for the channel estimates over the signal

estimates. Also, we note that the CSA does not appear to reduce the MSE significantly for

the T = 1 case or for low SNR values.
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Figure 5. Average MSE of the elements of (a) the two sources and (b) the two channels
compared with the mean CCRB. Note the CCRB for the channels overlap.
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Figure 6. The average decrement at each iteration.
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8. Conclusions

We determined the asymptotic normality properties of a parametrically constrained

maximum-likelihood problem. In doing so, we have shown that this CMLE is consistent

and asymptotically efficient. We then derived a generalization of the method of scoring, the

Constrained Scoring Algorithm, using Langrangian optimization methods. The CSA

maintains certain desirable convergence properties and proofs of these have been offered.

Finally, we examined several problems of interest: the classical linear model and an

instantaneous linear mixing model, to verify the usefulness of this approach. For the linear

model, we found another CMLE which we have shown to be unbiased and efficient.
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A. Equivalence of Optimality Conditions

This appendix shows the equivalence between Bertsekas’ criteria of optimality locally in a

convex set (22,27 ) and the method of Lagrange multipliers. Bertsekas defines θ∗ ∈ Θ to be

optimal in the convex set Θ provided

∇T
θ log p(x; θ∗)(θ∗)(θ − θ∗) ≤ 0 (A.1)

for all θ ∈ Θ. The Lagrange method is optimal given the KKT conditions in equations 20

through 24.

Assume equation A.1. Then either

(a) θ∗ ∈ intΘ (the interior of Θ), or

(b) θ∗ ∈ ∂Θ (the boundary).

First, suppose (a) θ∗ ∈ intΘ. Then θ∗ is in an open set O ⊂ Θ. Let θ
′
be a point

sufficiently close to θ∗ so that both θ
′
and θ

′′
= θ∗ − (θ

′ − θ∗) are in O. Note that θ
′′

is

the point vector exactly oppposite θ
′
from θ∗. Since θ∗ is optimal, then

∇T
θ log p(x; θ∗)(θ∗)(θ − θ∗) ≤ 0.

for θ = θ
′
and θ = θ

′′
. But also

∇T
θ log p(x; θ∗)(θ

′′ − θ∗) = ∇T
θ log p(x; θ∗) · −(θ

′ − θ∗) ≥ 0.

So, ∇T
θ log p(x; θ∗)(θ − θ∗) = 0 for every θ ∈ O since the choice of θ

′
was arbitrary. And

since O is open the dimension of {θ − θ∗ : θ ∈ O} is the dimension of Θ. Thus, we must

have that ∇θ log p(x; θ) = 0. Simply choose µ∗ = 0 and ν∗ = 0, then the equation in (24)

is satisfied by

∇θ log p(x; θ∗) + µ∗TF (θ∗) + ν∗T G(θ∗) = 0.

Otherwise, suppose (b) that θ∗ ∈ ∂Q and suppose ∇θ log p(x; θ∗) 6= 0. Then since we have

f(θ) = 0, g(θ) ≤ 0 for θ ∈ Θ and f(θ) = 0, g(θ) ≥ 0 for θ /∈ Θ, and F (θ∗), −G(θ∗) must

span the convex set locally at θ∗, then, in particular, there exists a µ, ν with ν ≥ 0 such

that

µT F (θ∗) − νT G(θ∗) = −ε∇θ log p(x; θ∗)
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for some small ε > 0. This is because the gradient of the negative log-likelihood must be in

the direction of the convex set, otherwise θ∗ is not optimal. Therefore, µ∗ = −ε−1µ and

ν∗ = ε−1ν gives the desired KKT condition equation 24. (Note this requires the inequality

constraint - for the strict equality constraint the set is not necessarily convex!)

Conversely, suppose we have the KKT condition equation 24. If the gradient of the

log-likelihood is zero at a stationary point, then that stationary point is in intΘ and the

Bertsekas condition is trivial. So suppose it is nonzero and thus our stationary point θ∗ is

on the boundary ∂Θ. Note g(θ∗) = 0 on ∂Θ. Recall the Lagrangian in equation 19. Then

note that for any θ in Θ we have that

L(θ, µ∗, ν∗) = L(θ∗, µ∗, ν∗) + ∇T
θ L(θ∗, µ∗, ν∗)(θ − θ∗) + o(1)

= L(θ∗, µ∗, ν∗) −∇T
θ log p(x; θ∗)(θ − θ∗)

+µ∗T F (θ∗)(θ − θ∗) + ν∗T G(θ∗)(θ − θ∗) + o(1)

= L(θ∗, µ∗, ν∗) −∇T
θ log p(x; θ∗)(θ − θ∗)

+µ∗T (f(θ) − f(θ∗)) + ν∗T (g(θ) − g(θ∗)) + o(1)

= L(θ∗, µ∗, ν∗) −∇T
θ log p(x; θ∗)(θ − θ∗) + ν∗T g(θ) + o(1).

Since, θ∗ is optimal then L(θ, µ∗, ν∗) ≥ L(θ∗, µ∗, ν∗), provided we scale ν∗ to be

sufficiently small. Thus, −∇T
θ log p(x; θ∗)(θ − θ∗) ≥ −ν∗T g(θ) + o(1). Then θ can be made

arbitrarily close to θ∗ to force o(1) → 0 and ν∗ can be scaled arbitrarily small and we have

−∇T
θ log p(x; θ∗)(θ − θ∗) ≥ 0.
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B. Taylor Expansion Derivation

Given the general iterative form equation 33, we derive the CSA via a Taylor expansion.

Note that for any iterate θk satisfying the constraints, the space spanned by the gradient of

the active constraints at θk, namely F (θk), are the directions for steepest descent and

ascent of f . Thus, for the step dk to be feasible (or nearly so), it is necessary that dk be

orthogonal (or nearly so) to this gradient matrix, i.e., dk ∈ span U(θk). Let d
′

k be such

that dk = U(θk)d
′

k where U(θk) is defined in equation 5. So, the iterative form is now

θk+1 = θk + αk · U(θk)d
′

k. (B.1)

Now, consider the Taylor expansion of the log-likelihood about θk along the vector

U(θk)d
′
k. This is given by

log p(x; θk + U(θk)d
′

k) = log p(x; θk) + ∇T
θ log p(x; θk)U(θk)d

′

k

+
1

2
d

′T
k UT (θk)∇2

θ log p(x; θk)U(θk)d
′

k + o(
∥∥∥d

′

k

∥∥∥)

≈ log p(x; θk) + ∇T
θ log p(x; θk)U(θk)d

′

k

−1

2
d

′T
k UT (θk)I(θk)U(θk)d

′

k.

Note above we replace the negative Hessian with the Fisher Information as well as drop the

higher order terms. This gives, approximately, a quadratic log-likelihood model restricted

to the subspace spanned by the columns of U(θk), i.e., the space which locally preserves

the active constraints f(θk) = 0, which is why it is refered to as the null space. The

maximum of this quadratic model

Φ(d
′

k) = ∇T
θ log p(x; θk)U(θk)d

′

k −
1

2
d

′T
k UT (θk)I(θk)U(θk)d

′

k (B.2)

over the choice of d
′

k must be the stationary point of the approximation. Hence,

differentiating equation B.2 and setting the result to 0, the optimal d
′∗
k must satisfy

0 = ∇T
θ log p(x; θk)U(θk) − UT (θk)I(θk)U(θk)d

′∗
k .

This requires more than just the non-singularity of the UT (θk)I(θk)U(θk) matrix, since

the Hessian of the log-likelihood approximation must be negative definite as well for d
′∗
k to

maximize this function. Indeed, in this case, the Hessian of Φ(d
′
k) is −UT (θk)I(θk)U(θk),

so we must have that UT (θk)I(θk)U(θk) is positive definite as well. Solving for d
′∗
k and

substituting into dk in equation B.1 we obtain the unrestored version of the CSA,

θk+1 = θk + αkU(θk)(U
T (θk)I(θk)U(θk))

−1UT (θk)∇θ log p(x; θk).
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C. Constrained Least Squares Estimator

We will show that the CLSE in equation 65 is both unbiased and efficient relative to the

Marzetta form of the CCRB under the assumption that x ∼ N (Hθo, C). We only show

this for the real parameter case, although the complex parameter case is similar. We do so

without the nullspace derivation of the CLSE. The equality shown in Theorem 3 is an

alternative proof of this fact. Recall that the MLE θ̄(x) is unbiased, thus

Eθo θ̂CLSE(x) =
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
IEθoθ̄(x) − I−1F T

(
FI−1F T

)−1
v

=
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
Iθo − I−1F T

(
FI−1F T

)−1
v

= θo − I−1F T
(
FI−1F T

)−1
(Fθo + v)

= θo.

So the CLSE is also unbiased. The covariance matrix of the CLSE is given by

Covθo(θ̂CLSE(x))
= Eθo θ̂CLSE(x)θ̂T

CLSE(x) − θoθ
T
o

=
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
IEθo(θ̄(x)θ̄T (x))I

(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)

−
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
IEθo(θ̄(x))vT

(
FI−1F T

)−1
FI−1

−I−1F T
(
FI−1F T

)−1
vEθo(θ̄

T (x))I
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)

+I−1F T
(
FI−1F T

)−1
vvT

(
FI−1F T

)−1
FI−1 − θoθ

T
o

=
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
IEθo(θ̄(x)θ̄T (x))I

(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)

−
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
Iθov

T
(
FI−1F T

)−1
FI−1

−I−1F T
(
FI−1F T

)−1
vθT

o I
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)

+I−1F T
(
FI−1F T

)−1
vvT

(
FI−1F T

)−1
FI−1 − θoθ

T
o

=
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
IEθo(θ̄(x)θ̄T (x))I

(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)

+
[((

I−1 − I1F T
(
FI−1F T

)−1
FI−1

)
Iθo − I−1F T

(
FI−1F T

)−1
v
)
·

((
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
Iθo − I−1F T

(
FI−1F T

)−1
v
)T

]

−
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
Iθoθ

T
o I

(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
− θoθ

T
o .
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But since Fθo + v = 0, then

(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
Iθo − I−1F T

(
FI−1F T

)−1
v

= θo − I−1F T
(
FI−1F T

)−1
(Fθo + v)

= θo.

So this, with the knowledge that the MLE θ̄(x) is efficient relative to the CRB, shows that

the covariance matrix of the CLSE is

Covθo(θ̂CLSE(x))

=
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
I

[
Eθo(θ̄(x)θ̄T (x)) − θoθ

T
o

]

×I
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)

=
(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)
I

(
I−1 − I−1F T

(
FI−1F T

)−1
FI−1

)

= I−1 − I−1F T
(
FI−1F T

)−1
FI−1

which is the Marzetta form of the CCRB (2 ). Therefore the CLSE is both unbiased and

efficient.
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REDSTONE ARSENAL AL 35898-5000 
 
US ARMY INFO SYS ENGRG CMND 
ATTN  AMSEL-IE-TD  F  JENIA 
FT HUACHUCA AZ 85613-5300 
 

US ARMY SIMULATION TRAIN & 
INSTRMNTN CMND 
ATTN  AMSTI-CG  M  MACEDONIA 
12350 RESEARCH PARKWAY 
ORLANDO FL 32826-3726 
 
US GOVERNMENT PRINT OFF 
DEPOSITORY RECEIVING SECTION 
ATTN  MAIL STOP IDAD  J  TATE 
732 NORTH CAPITOL ST., NW 
WASHINGTON DC 20402 
 
US ARMY RSRCH LAB 
ATTN  AMSRD-ARL-CI-OK-TP TECHL 
LIB  T  LANDFRIED (2 COPIES) 
ABERDEEN PROVING GROUND MD 
21005-5066 
 
DIRECTOR 
US ARMY RSRCH LAB 
ATTN  AMSRD-ARL-RO-EV  W D  BACH 
PO BOX 12211 
RESEARCH TRIANGLE PARK NC 27709 
 
US ARMY RSRCH LAB 
ATTN  AMSRD-ARL-CI  J  GOWENS 
ATTN  AMSRD-ARL-CI-C  W  INGRAM 
ATTN  AMSRD-ARL-CI-CN  A  SWAMI 
ATTN  AMSRD-ARL-CI-CN  B  SADLER 
ATTN  AMSRD-ARL-CI-CN  G  RACINE 
(2 COPIES) 
ATTN  AMSRD-ARL-CI-CN  S  MISRA 
ATTN  AMSRD-ARL-CI-OK-T TECHL 
PUB (2 COPIES) 
ATTN  AMSRD-ARL-CI-OK-TL TECHL 
LIB (2 COPIES) 
ATTN  AMSRD-ARL-D  J M  MILLER 
ATTN  AMSRL-CI-CN  T  MOORE 
(5 COPIES) 
ATTN  IMNE-ALC-IMS MAIL & 
RECORDS MGMT 
ADELPHI MD 20783-1197
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